Orbit-induced spin squeezing in a spin-orbit coupled Bose-Einstein condensate

نویسندگان

  • Jinling Lian
  • Lixian Yu
  • J.-Q. Liang
  • Gang Chen
  • Suotang Jia
چکیده

In recent pioneer experiment, a strong spin-orbit coupling, with equal Rashba and Dresselhaus strengths, has been created in a trapped Bose-Einstein condensate. Moreover, many exotic superfluid phenomena induced by this strong spin-orbit coupling have been predicted. In this report, we show that this novel spin-orbit coupling has important applications in quantum metrology, such as spin squeezing. We first demonstrate that an effective spin-spin interaction, which is the heart for producing spin squeezing, can be generated by controlling the orbital degree of freedom (i.e., the momentum) of the ultracold atoms. Compared with previous schemes, this realized spin-spin interaction has advantages of no dissipation, high tunability, and strong coupling. More importantly, a giant squeezing factor (lower than -30 dB) can be achieved by tuning a pair of Raman lasers in current experimental setup. Finally, we find numerically that the phase factor of the prepared initial state affects dramatically on spin squeezing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate

Recently, strong spin-orbit coupling with equal Rashba and Dresselhaus strength has been realized in neutral atomic Bose-Einstein condensates via a pair of Raman lasers. In this report, we investigate spin and field squeezing of the ground state in spin-orbit coupled Bose-Einstein condensate. By mapping the spin-orbit coupled BEC to the well-known quantum Dicke model, the Dicke type quantum pha...

متن کامل

Spin-orbit-coupled Bose-Einstein condensates in a one-dimensional optical lattice.

We investigate a spin-orbit-coupled Bose-Einstein condensate loaded into a translating optical lattice. We experimentally demonstrate the lack of Galilean invariance in the spin-orbit-coupled system, which leads to anisotropic behavior of the condensate depending on the direction of translation of the lattice. The anisotropy is theoretically understood by an effective dispersion relation. We ex...

متن کامل

Observation of Zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate

Spin-orbit-coupled ultracold atoms provide an intriguing new avenue for the study of rich spin dynamics in superfluids. In this Rapid Communication, we observe Zitterbewegung, the simultaneous velocity (thus position) and spin oscillations, of neutral atoms between two spin-orbit-coupled bands in a Bose-Einstein condensate (BEC) through sudden quantum quenches of the Hamiltonian. The observed Z...

متن کامل

Mean-field dynamics of spin-orbit coupled Bose-Einstein condensates.

Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the sta...

متن کامل

Bright solitons in a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate

We study a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate with repulsive contact interactions by both the variational method and the imaginary-time evolution of the Gross-Pitaevskii equation. The dipoles are completely polarized along one direction in the two-dimensional plane to provide an effective attractive dipole-dipole interaction. We find two types of solitons as the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013